Энергетические процессы в мышечной клетке. Энергия сокращения мышц

Содержание

Аденозинтрифосфорная кислота (молекула АТФ в биологии) является веществом, вырабатываемым организмом. Это источник энергии для каждой клетки тела. Если АТФ вырабатывается недостаточно, то наступают сбои в работе сердечно-сосудистой и других систем и органов. В этом случае медики назначают препарат, содержащий аденозинтрифосфорную кислоту, которая выпускается в таблетках и ампулах.

Что такое АТФ

Аденозинтрифосфат, Аденозинтрифосфорная кислота или АТФ - это нуклеозидтрифосфат, который является универсальным источником энергии для всех живых клеток. Молекула обеспечивает связь между тканями, органами и системами организма. Являясь носителем высокоэнергетических связей, Аденозинтрифосфат осуществляет синтез сложных веществ: перенос через биологические мембраны молекул, мышечное сокращение и прочие. Строение АТФ – это рибоза (пятиуглеродный сахар), аденин (азотистое основание) и три остатка фосфорной кислоты.

Помимо энергетической функции АТФ, молекула нужна в организме для:

  • расслабления и сокращения сердечной мышцы;
  • нормальной работы межклеточных каналов (синапсов);
  • возбуждения рецепторов для нормального проведения по нервным волокнам импульса;
  • передачи возбуждения от блуждающего нерва;
  • хорошего кровоснабжения головного, сердца;
  • повышения выносливости организма при активной мышечной нагрузке.

Препарат АТФ

Как расшифровывается АТФ, понятно, но что происходит в организме при снижении ее концентрации, ясно не всем. Через молекулы аденозинтрифосфорной кислоты под влиянием негативных факторов в клетках реализуются биохимические изменения. По этой причине люди с дефицитом АТФ страдают сердечно-сосудистыми заболеваниями, у них развивается дистрофия мышечных тканей. Чтобы обеспечить организму необходимый запас аденозинтрифосфата, назначаются медикаменты с его содержанием.

Лекарство АТФ – это препарат, который назначают для лучшего питания клеток тканей и кровоснабжения органов. Благодаря ему в организме пациента происходит восстановление работы сердечной мышцы, снижаются риски развития ишемии, аритмии. Прием АТФ улучшает процессы кровообращения, снижает опасность возникновения инфаркта миокарда. Благодаря улучшению данных показателей, в норму приводится общее физическое здоровье, у человека повышается работоспособность.

Инструкция по применению АТФ

Фармакологические свойства АТФ – препарата схожи с фармакодинамикой самой молекулы. Лекарственное средство стимулирует энергетический обмен, нормализует уровень насыщения ионами калия и магния, понижает содержание мочевой кислоты, активизирует ионотранспортные системы клеток, развивает антиоксидантную функцию миокарда. Пациентам с тахикардией и фибрилляцией предсердий применение лекарства помогает восстановить естественный синусовый ритм, уменьшить интенсивность эктопических очагов.

При ишемии и гипоксии медикамент создает мембраностабилизирующую и антиаритмическую активность, благодаря свойству налаживать метаболизм в миокарде. Препарат АТФ благотворно влияет на центральную и периферическую гемодинамику, коронарное кровообращение, увеличивает способность сокращения сердечной мышцы, улучшает функциональность левого желудочка и сердечный выброс. Весь это спектр действий приводит к понижению количества приступов стенокардии и одышки.

Состав

Действующее вещество препарата – натриевая соль аденозинтрифосфорной кислоты. Лекарство АТФ в ампулах содержит в 1 мл 20 мг активного компонента, а в таблетках – 10 или 20 г на штуку. Вспомогательные вещества в растворе для инъекций – это лимонная кислота и вода. Таблетки содержат дополнительно:

  • безводный коллоидный диоксид кремния;
  • бензоат натрия (Е211);
  • крахмал кукурузный;
  • стеарат кальция;
  • моногидрат лактозы;
  • сахарозу.

Форма выпуска

Как уже упоминалось, выпускается медикамент в таблетках и ампулах. Первые упаковываются в блистер по 10 штук, продаются по 10 или 20 мг. Каждая коробка содержит 40 таблеток (4 блистерные упаковки). Каждая ампула 1 мл содержит 1% раствор для инъекций. В картонной коробке имеется 10 штук и инструкция по применению. Аденозинтрифосфорная кислота таблетизированной формы бывает двух видов:

  • АТФ-Лонг – препарат с более длительным действием, который выпускается в таблетках белого цвета по 20 и 40 мг с насечкой для деления с одной стороны и фаской – с другой;
  • Форте – лекарство АТФ для сердца в таблетках для рассасывания по 15 и 30 мг, которое показывает более выраженное действие на сердечную мышцу.

Показания к применению

Таблетки или уколы АТФ чаще назначают при различных заболеваниях сердечно-сосудистой системы. Поскольку спектр действия препарата широк, лекарственное средство показано при следующих состояниях:

  • вегето-сосудистая дистония;
  • стенокардия покоя и напряжения;
  • нестабильная стенокардия;
  • наджелудочковая пароксизмальная тахикардия;
  • суправентрикулярная тахикардия;
  • ишемическая болезнь сердца;
  • постинфарктный и миокардический кардиосклероз;
  • сердечная недостаточность;
  • нарушения сердечного ритма;
  • аллергический или инфекционный миокардит;
  • синдром хронической усталости;
  • миокардиодистрофия;
  • коронарный синдром;
  • гиперурикемия разного генеза.

Дозировка

АТФ-Лонг рекомендуется класть под язык (сублингвально) до полного рассасывания. Лечение осуществляется независимо от еды 3-4 раза/сутки в дозировке 10-40 мг. Терапевтический курс назначает врач индивидуально. Средняя продолжительность лечения – 20-30 дней. Более длительный прием доктор назначает по собственному усмотрению. Разрешается повторить курс через 2 недели. Не рекомендуется превышать суточную дозу выше 160 мг препарата.

Инъекции АТФ внутримышечно вводятся 1-2 раза/сутки по 1-2 мл из расчета 0,2-0,5 мг/кг веса пациента. Внутривенное введение препарата осуществляется медленно (в виде инфузий). Дозировка составляет 1-5 мл из расчета 0,05-0,1 мг/кг/мин. Проводятся инфузии исключительно в условиях стационара под тщательным контролем показателей артериального давления. Продолжительность инъекционной терапии составляет около 10-14 дней.

Противопоказания

Препарат АТФ назначают с осторожностью при комплексной терапии с другими лекарственными средствами, которые содержат магний и калий, а также с медикаментами, предназначенными для стимуляции сердечной деятельности. Абсолютные противопоказания к применению:

  • грудное вскармливание (лактация);
  • беременность;
  • гиперкалиемия;
  • гипермагниемия;
  • кардиогенный или другие виды шока;
  • острый период инфаркта миокарда;
  • обструктивные патологии легких и бронхов;
  • синоатриальная блокада и AV-блокада 2-3 степени;
  • геморрагический инсульт;
  • тяжелая форма бронхиальной астмы;
  • детский возраст;
  • гиперчувствительность к компонентам, входящим в состав лекарства.

Побочные действия

При некорректном применении лекарственного средства может возникнуть передозировка, при которой наблюдаются: артериальная гипотензия, брадикардия, AV-блокада, потеря сознания. При таких признаках необходимо прекратить прием препарата и обратиться к врачу, который назначит симптоматическое лечение. Побочные реакции возникают и при длительном использовании медикамента. Среди них:

  • тошнота;
  • кожный зуд;
  • дискомфорт в эпигастральной области и груди;
  • высыпания на коже;
  • гиперемия лица;
  • бронхоспазм;
  • тахикардия;
  • усиление диуреза;
  • головные боли;
  • головокружение;
  • ощущение жара;
  • усиление моторики желудочно-кишечного тракта;
  • гиперкалиемия;
  • гипермагниемия;
  • отек Квинке.

Источником энергии в клетках является вещество аденозинтрифосфат (АТФ), которое при необходимости распадается до аденозинфосфата (АДФ):

АТФ → АДФ + энергия.

При интенсивной нагрузке имеющийся запас АТФ расходуется всего за 2 секунды. Однако АТФ непрерывно восстанавливается из АДФ, что позволяет мышцам продолжать работать. Существует три основные системы восстановления АТФ: фосфатная, кислородная и лактатная.

Фосфатная система

Фосфатная система выделяет энергию максимально быстро, поэтому она важна там, где требуется стремительное усилие, например, для спринтеров, футболистов, прыгунов в высоту и длину, боксеров и теннисистов.

В фосфатной системе восстановление АТФ происходит за счет креатинфосфата (КрФ), запасы которого имеются непосредственно в мышцах:

КрФ + АДФ → АТФ + креатин.

При работе фосфатной системы не используется кислород и не образуется молочная кислота.

Фосфатная система работает только в течение короткого времени — при максимальной нагрузке совокупный запас АТФ и КрФ истощается за 10 секунд. После завершения нагрузки запасы АТФ и КрФ в мышцах восстанавливаются на 70% через 30 секунд и полностью — через 3-5 минут. Это нужно иметь в виду при выполнении скоростных и силовых упражнений. Если усилие длится дольше 10 секунд или перерывы между усилиями слишком короткие, то включается лактатная система.

Кислородная система

Кислородная, или аэробная, система важна для спортсменов на выносливость, так как она может поддерживать длительную физическую работу.

Производительность кислородной системы зависит от способности организма транспортировать кислород в мышцы. За счет тренировок она может вырасти на 50%.

В кислородной системе энергия образуется, главным образом, в результате окисления углеводов и жиров. Углеводы расходуются в первую очередь, так как для них требуется меньше кислорода, а скорость выделения энергии выше. Однако запасы углеводов в организме ограничены. После их исчерпания подключаются жиры — интенсивность работы при этом снижается.

Соотношение используемых жиров и углеводов зависит от интенсивности упражнения: чем выше интенсивность, тем больше доля углеводов. Тренированные спортсмены используют больше жиров и меньше углеводов по сравнению с неподготовленным человеком, то есть более экономично расходуют имеющиеся запасы энергии.

Окисление жиров происходит по уравнению:

Жиры + кислород + АДФ → АТФ + углекислый газ + вода.

Распад углеводов протекает в два шага:

Глюкоза + АДФ → АТФ + молочная кислота.

Молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода.

Кислород требуется только на втором шаге: если его достаточно, молочная кислота не накапливается в мышцах.

Лактатная система

При высокой интенсивности нагрузки поступающего в мышцы кислорода не хватает для полного окисления углеводов. Образующаяся молочная кислота не успевает расходоваться и накапливается в работающих мышцах. Это приводит к ощущению усталости и болезненности в работающих мышцах, а способность выдерживать нагрузку снижается.

В начале любого упражнения (при максимальном усилии — в течение первых 2 минут) и при резком увеличении нагрузки (при рывках, финишных бросках, на подъемах) возникает дефицит кислорода в мышцах, так как сердце, легкие и сосуды не успевают полностью включиться в работу. В этот период энергия обеспечивается за счет лактатной системы, с выработкой молочной кислоты. Чтобы избежать накопления большого количества молочной кислоты в начале тренировки, нужно выполнить легкую разогревающую разминку.

При превышении определенного порога интенсивности организм переходит на полностью анаэробное энергообеспечение, в котором используются только углеводы. Из-за нарастающей мышечной усталости способность выдерживать нагрузку истощается в течение нескольких секунд или минут, в зависимости от интенсивности и уровня подготовки.

Влияние молочной кислоты на работоспособность

Рост концентрации молочной кислоты в мышцах имеет несколько последствий, которые нужно учитывать при тренировках:

  • Нарушается координация движений, что делает тренировки на технику неэффективными.
  • В мышечной ткани возникают микроразрывы, что повышает риск травм.
  • Замедляется образование креатинфосфата, что снижает эффективность спринтерских тренировок (тренировок фосфатной системы).
  • Снижается способность клеток окислять жир, что сильно затрудняет энергообеспечение мышц после истощения запасов углеводов.

В условиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 минут; за 75 минут нейтрализуется 95% молочной кислоты. Если вместо пассивного отдыха выполняется легкая заминка, например, пробежка трусцой, то молочная кислота выводится из крови и мышц намного быстрее.

Высокая концентрация молочной кислоты может вызвать повреждение стенок мышечных клеток, что приводит к изменениям в составе крови. Для нормализации показателей крови может потребоваться от 24 до 96 часов. В этот период тренировки должны быть легкими; интенсивные тренировки сильно замедлят восстановительные процессы.

Слишком высокая частота интенсивных нагрузок, без достаточных перерывов на отдых, приводит к снижению работоспособности, а в дальнейшем — к перетренированности.

Запасы энергии

Энергетические фосфаты (АТФ и КрФ) расходуются за 8-10 секунд максимальной работы. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Как правило, их хватает на 60-90 минут интенсивной работы.

Запасы жиров в организме практически неисчерпаемы. Доля жировой массы у мужчин составляет 10-20%; у женщин — 20-30%. У хорошо тренированных спортсменов на выносливость процент жира может находиться в диапазоне от максимально низкого до относительно высокого (4-13%).

Запасы энергии человека
* Высвобождаемая энергия при переходе в АДФ
Источник Запас (при весе 70 кг) Длительность Дли-
тель-
ность

интенсивной
работы
Энергети-
ческая система
Особенности
Граммы Ккал
Фосфаты (фосфатная система энергообеспечения )
Фосфаты 230 8* 8—10 секунд Фосфатная Обеспечивают «взрывную» силу. Кислород не требуется
Гликоген (кислородная и лактатная системы энергообеспечения )
Гликоген 300—
400
1200—
1600
60—90 минут Кислородная и лактатная При нехватке кислорода образуется молочная кислота
Жиры (кислородная система энергообеспечения )
Жиры Больше 3000 Больше 27000 Больше 40 часов Кислородная Требуют больше кислорода; интенсивность работы снижается

По книге Петера Янсена «ЧСС, лактат и тренировки на выносливость».

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье « «.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

  1. Алактатная или фосфагенная (анаэробная). Связана с процессами ресинтеза АТФ преимущественно за счет высокоэнергетического фосфатного соединения – КреатинФосфата (КрФ).
  2. Гликолитическая (анаэробная). Обеспечивает ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена и/или глюкозы до молочной кислоты (лактата).
  3. Аэробная (окислительная). Возможность выполнения работы за счет окисления углеводов, жиров, белков при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

Выглядит это так:

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно , то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти .

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

  1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
  2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
  3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут. Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Движение любого сочленения осуществляется благодаря сокращениям скелетных мышц. На следующей диаграмме представлен метаболизм энергии в мышце.

Сократительная функция всех типов мышц обусловлена превращением в мышечных волокнах химической энергии определённых биохимических процессов в механическую работу. Гидролиз аденозинтрифосфата (АТФ) как раз иобеспечивает мышцу этой энергией.

Поскольку снабжение мускулатуры АТФ невелико, необходимо активировать метаболические пути к ресинтезу АТФ , чтобы уровень синтеза соответствовал затратам на сокращение мышц. Образование энергии для обеспечения мышечной работы может осуществляться анаэробным (без использования кислорода) и аэробным путем. АТФ синтезируется из аденозиндифосфата (АДФ ) посредством энергии креатинфосфата, анаэробного гликолиза или окислительного метаболизма. Запасы АТФ в мышцах сравнительно ничтожны и их может хватить лишь на 2-3 секунды интенсивной работы.

Креатинфосфат

Запасы креатинфосфата (КрФ ) в мышце побольше запасов АТФ и они анаэробномогут быть быстро превращены в АТФ . КрФ – самая «быстрая» энергии в мышцах (она обеспечивает энергию в первые 5-10 секунд очень мощной, взрывной работы силового характера, например, при подъеме штанги). После исчерпания запасов КрФ организм переходит к расщеплению мышечного гликогена, обеспечивающего более продолжительную (до 2-3 минут), но менее интенсивную (в три раза) работу.

Гликолиз

Гликолиз - форма анаэробного метаболизма, обеспечивающая ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена или глюкозы до молочной кислоты.

КрФ считаетсятопливом быстрой реализации, которыйрегенерирует АТФ , которогов мышцах незначительное количество и поэтомуКрФ является основным энергетиком в течение нескольких секунд. Гликолиз более сложная система, способная функционироватьдлительное время, поэтому ее значение существенно для более длительных активных действий. КрФ ограничен своим незначительным количеством. Гликолиз же имеет возможность для относительно длительного энергетического обеспечения, но, производя молочную кислоту,заполняет ею двигательные клетки ииз-заэтого ограничивает мышечную активность.

Окислительный метаболизм

Связан с возможностью выполнения работы за счет окисления энергетических субстратов, в качестве которых могут использоваться углеводы, жиры, белки при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Для пополнения срочных и кратковременных энергетических запасов и выполнения длительной работы мышечная клетка использует так называемые долговременные источники энергии. К ним относятся глюкоза и другие моносахара, аминокислоты, жирные кислоты, глицеролкомпоненты продуктов питания, доставляемые в мышечную клетку через капиллярную сеть и участвующие в окислительном метаболизме. Эти источники энергии генерируют образование АТФ путем сочетания утилизации кислорода с окислением носителей водорода в электронтранспортной системе митохондрии.

В процесс полного окисления одной молекулы глюкозы синтезируется 38 молекул АТФ . При сопоставлении анаэробного гликолиза с аэробным расщеплением углеводов можно заметить, что аэробный процесс в 19 раз эффективнее.

Во время выполнения кратковременных интенсивных физических нагрузок в качестве основных источников энергии используются КрФ , гликоген и глюкоза скелетных мышц. В этих условиях главным фактором, лимитирующим образование АТФ , можно считать отсутствие необходимого количества кислорода. Интенсивный гликолиз приводит к накоплению в скелетных мышцах больших количеств молочной кислоты, которая постепенно диффундирует в кровь и переносится в печень. Высокие концентрации молочной кислоты становятся важным фактором регуляторного механизма, ингибирующего обмен свободных жирных кислот во время физических нагрузок длительностью 30-40 с.

По мере увеличения длительности физических нагрузок происходит постепенное снижение концентрации инсулина в крови. Этот гормон активно участвует в регуляции жирового обмена и при высоких концентрациях тормозит активность липаз. Снижение концентрации инсулина во время длительных физических нагрузок приводит к повышению активности инсулин зависимых ферментных систем, что проявляется в усилении процесса липолиза и увеличении освобождения жирных кислот из депо.

Важность этого регуляторного механизма становится очевидной, когда спортсмены допускают наиболее распространенную ошибку. Нередко, стараясь обеспечить организм легкоусвояемыми источниками энергии, за час до начала соревнований или тренировок они принимают богатую углеводами пищу или концентрированный, содержащий глюкозу, напиток. Такое насыщение организма легкоусвояемыми углеводами приводит через 15-20 минут к повышению уровня глюкозы в крови, а это, в свою очередь, вызывает усиленное выделение инсулина клетками поджелудочной железы. Повышение концентрации этого гормона в крови приводит к усилению потребления глюкозы в качестве источника энергии для мышечной деятельности. В конечном счете, вместо энергетически более выгодных жирных кислот в организме расходуются углеводы. Так, прием глюкозы за час до старта может существенно повлиять на спортивную работоспособность и снизить выносливость к длительной нагрузке.

Активное участие свободных жирных кислот в энергетическом обеспечении мышечной деятельности позволяет более экономно выполнять длительные физические на грузки. Усиление процесса липолиза во время физических нагрузок приводит к освобождению жирных кислот из жировых депо в кровь, и они могут быть доставлены в скелетные мышцы или использованы для образования липопротеинов крови. В скелетных мышцах свободные жирные кислоты проникают в митохондрии, где подвергаются последовательному окислению, сопряженному с фосфорилированием и синтезом АТФ .

Каждый из перечисленных биоэнергетических компонентов физической работоспособности характеризуется критериями мощности, емкости и эффективности (табл. 1).

Таблица 1. Основные биоэнергетические характеристики метаболических процессов - источников энергии при мышечной деятельности

Критерии мощности

Максимальная энергетическая емкость, кДж/кГ

Метаболический процесс

Максимальная мощность, кДж/кГмин

Время достижения макс. мощи. физической работы, с

Время удержания работоспособности на уровне макс. мощн., с

Алактатный анаэробный

3770

Гликолитический -анаэробный

2500

15-20

90-250

1050

Аэробный

1250

90-180

340-600

Не ограничена

Критерий мощности оценивает то максимальное количество энергии в единицу времени, которое может быть обеспечено каждой из метаболических систем.

Критерий емкости оценивает доступные для использования общие запасы энергетических веществ в организме, или общее количество выполненной работы за счет данного компонента.

Критерий эффективности показывает, какое количество внешней (механической) работы может быть выполнено на каждую единицу затрачиваемой энергии.

Важное значение имеет соотношение аэробной и анаэробной энергопродукции при выполнении работы разной интенсивности. На примере беговых дистанций из легкой атлетики можно представить это соотношение (табл.2)

Таблица 2. Относительный вклад механизмов аэробной и анаэробной энергопродукции при выполнении с максимальной интенсивностью однократной работы различной продолжительности

Зоны энергообеспечения

Продолжительность работы

Доля энергопродукции

(в %)

время, мин

Дистанция, м

Аэробная

Анаэробная

Анаэробная

10-13"

20-25"

45-60"

1,5-2,0"

Смешанная аэробно-анаэробная

2,5-3"

1000

4,0-6,0"

1500

8,0-13,0"

3000-5000

Аэробная

12,0-20,0"

5000

24,0-45,0"

10000

Более 1,5 час

30000-42195

Энергия АТФ используется во время деятельности скелетной мыш­цы для 3-х процессов:

■ работы K + -Na + -насоса, обеспечивающего постоянство градиента концентраций ионов K + и Na + по обе стороны мембраны;

■ процесса скольжения актиновых и миозиновых нитей, ведущего к укорочению миофибрилл;

■ работы кальциевого насоса, необходимого для расслабления во­локна.

При работе мышц химическая энергия превращается в механиче­скую, т.е. мышца является химическим двигателем, а не тепловым. Для процессов сокращения и расслабления мышц потребляется энергия АТФ. Расщепление АТФ с отсоединением одной молекулы фосфата и об­разованием аденозиндифосфата (АДФ) сопровождается выделением 10 ккал энергии на 1 моль: АТФ = АДФ + Ф + Эн. Однако запасы АТФ в мышцах невелики (около 5 ммоль/л). Их хватает лишь на 1 - 2 с работы. Количество АТФ в мышцах не может изменяться, т.к. при отсутствии АТФ в мышцах развивается контрактура (не работает кальциевый насос и мыш­цы не в состоянии расслабляться), а при избытке - теряется эластичность.

Для продолжения работы требуется постоянное восполнение запа­сов АТФ. Восстановление АТФ происходит в анаэробных условиях - за счет распада креатинфосфата (КрФ) и глюкозы (реакции гликолиза), в аэробных условиях - за счет реакций окисления жиров и углеводов.

Быстрое восстановление АТФ происходит в тысячные доли секун­ды за счет распада КрФ: АДФ + КрФ = АТФ + Кр. Наибольшей эффектив­ности этот путь энергообразования достигает к 5 - 6-й секунде работы, но затем запасы КрФ исчерпываются, т.к. их также немного (около 30 ммоль/л).

Медленное восстановление АТФ в анаэробных условиях обеспечивается энергией расщепления глюкозы (выделяемой из гликогена) – реакцией гликолиза с образованием в конечном итоге молочной кислоты (лак-тата) и восстановлением двух молекул АТФ. Эта реакция достигает наибольшей мощности к концу 1- й минуты работы. Особое значение этот путь энергообразования имеет при высокой мощности работы, которая продолжается от 20 с до 1 – 2 мин (например, при беге на средние дистанции), а также при резком увеличении мощности более длительной и менее мощной работы (финишные ускорения при беге на длинные дистанции) и при недостатке кислорода во время выполнения статической работы. Ограничение использования углеводов связано не с уменьшением запасов гликогена (глюкозы) в мышцах и в печени, а с угнетением реакции гликолиза избытком накопившейся в мышцах молочной кислоты.

Реакции окисления обеспечивают энергией работу мышц в условиях достаточного поступления в организм кислорода, т.е. при аэробной работе длительностью более 2 – 3 мин. Доставка кислорода достигает необходимого уровня после достаточного развертывания функций кислородтранспортных систем организма (дыхательной, сердечно-сосудистой систем и системы крови). Важным показателем мощности аэробных процессов является предельная величина поступления в организм кислорода за 1 мин - максимальное потребление кислорода (МПК). Эта величина зависит от индивидуальных возможностей каждого человека. У нетренированных лиц в 1 мин поступает к работающим мышцам около 2,5 – 3 л О 2 , а у высококвалифицированных спортсменов (лыжников, пловцов, бегунов-стайеров и др.) достигает 5 – 6 л и даже 7 л в 1 мин.

При значительной мощности работы и огромной потребности при этом в кислороде основным субстратом окисления в большинстве спортивных упражнений являются углеводы, т.к. для их окисления требуется гораздо меньше кислорода, чем при окислении жиров. При использовании одной молекулы глюкозы (С 6 Н 12 О 6), полученной из гликогена, образуется 38 молекул АТФ, т.е. аэробный путь энергообразования обеспечивает при том же расходе углеводов во много раз больше продукции АТФ, чем анаэробный путь. Молочная кислота в этих реакциях не накапливается, а промежуточный продукт – пировиноградная кислота – сразу окисляется до конечных продуктов обмена – СО 2 и Н 2 О.

В качестве источника энергии жиры используются в состоянии двигательного покоя, при любой работе сравнительно невысокой мощности (требующей до 50 % МПК) и при очень длительной работе на выносливость (требующей около 70 – 80 % МПК). Среди всех источников энергии жиры обладают наибольшей энергетической емкостью: при расходовании 1 моля АТФ выделяется около 10 ккал энергии, 1 моля КрФ – око-ло 10,5 ккал, 1 моля глюкозы при анаэробном расщеплении – около 50 ккал, а при окислении 1 моля глюкозы в аэробных условиях – около 700 ккал, при окислении 1 моля жиров – 2 400 ккал. Однако использование жиров при работах высокой мощности лимитируется трудностью доставки кислорода работающим тканям.

Работа мышц сопровождается выделением тепла. Теплообразова-ние происходит в момент сокращения мышц – начальное теплообразование (оно составляет всего одну тысячную всех энерготрат) и в период восстановления – запаздывающее теплообразование.

В обычных условиях при работе мышц тепловые потери составляют около 80 % всех энерготрат. Для оценки эффективности механической работы мышцы используют вычисление коэффициента полезного действия (кпд). Величина кпд показывает, какая часть затрачиваемой энергии используется на выполнение механической работы мышцы. Ее вычисляют по формуле

кпд = [А: (Е - е)] · 100 %,

где А – энергия, затраченная на полезную работу;

Е – общий расход энергии;

е – расход энергии в состоянии покоя за время, равное длительности работы.

У нетренированного человека кпд примерно 20 %, у спортсмена – 30 – 35 %, т.е. мышца использует на движение 20 – 35 % химической энергии, остальная часть в форме тепла передается кровью другим тканям и равномерно согревает организм. Вот почему на холоде человек старается больше двигаться – подогревает себя энергией мышц. Мелкие непроизвольные сокращения мышц вызывают дрожь – организм увеличивает образование тепла.

При ходьбе наибольший кпд отмечается при скорости 3,6 – 4,8 км/ ч, при педалировании на велоэргометре – при длительности цикла около 1 сек. С увеличением мощности работы и включением «ненужных» мышц кпд уменьшается. При статической работе, поскольку А = 0, эффективность работы оценивается по длительности поддерживаемого напряжения мышц.

Трехглавая плеча


Наружная бедра


Камбаловидная

84 %

67 % -






Рис . 24. Состав мышечных волокон в разных мышцах :

медленные; ,.*>%" - быстрые

V<>-

Материалы для самостоятельной подготовки

Вопросы к коллоквиуму и для самоконтроля

1. Какие виды мышц у позвоночных животных и человека Вы знаете?

2. Назовите функции скелетных мышц.

3. Перечислите нейроны, иннервирующие скелетные мышцы.

4. Что является функциональной единицей мышцы?

5. Что входит в состав двигательной единицы (ДЕ)?

6. Что называют мотонейронным пулом?

7. Дать характеристику больших и малых ДЕ.

8. В чем заключается правило Хеннемана?

9. Опишите структуру мышечного волокна.

10. Как устроены миофибриллы?

11. Что такое саркомер?

12. Чем можно объяснить, что в состоянии покоя мышца имеет поперечнополо-сатый вид в световом микроскопе?

13. Опишите строение актиновых и миозиновых нитей.

14. Какова роль потенциала действия в возникновении мышечного сокращения?

15. Опишите механизм сокращения, расслабления мышечного волокна.

16. Кем была открыта ферментативная активность миозина?

17. Укажите последовательность событий, ведущих к сокращению, а затем рас-слаблению мышечного волокна.

18. В чем заключается роль АТФ в механизмах мышечного сокращения?

19. Перечислите фазы одиночного сокращения мышцы.

20. В каких случаях происходит суммация сокращений? Что такое тетанус?

21. Какие формы тетануса Вы знаете?

22. От чего зависит сокращение целой мышцы?

23. В чем заключается метод электромиографии?

24. От каких факторов зависит амплитуда ЭМГ?

25. Что такое сила мышцы и от каких морфологических и физиологических факторов она зависит?

26. Перечислите типы мышечных волокон. Дайте их характеристику.

27. Назовите режимы работы мышц.

28. Опишите энергетику мышечного сокращения.

rostokpao.ru - Спортивный портал - Rostokpao